Hockey Dryland Not the Only or Best Option

January 11, 2011

Over the past few years a disturbing trend has started to develop, young, developing hockey players using dryland as their only means of physical conditioning. I am not anti dryland, it does have a place and if done properly can be a valuable tool for building some aspects of hockey fitness but it can’t be the only tool. A well designed balanced program that includes strength training, aerobic training, hockey specific conditioning and dryland is the key to long term development.  Dryland alone has some severe limitations that will prevent a young player form reaching their full potential.

Not Hockey Specific

Dryland is not hockey specific. If you watch a hockey dryland session and a football dryland and a baseball dryland they all look the same. In fact dryland was designed for and transfers over to field based sport performances much better than it does on ice performances. There have been studies that show improvements in on field performance tests in football and soccer following drland agility training because the exercises used are similar to movements used on the field. All the data available on hockey actually shows no improvement in on ice agility following dryland agility training because skating and running are too different.

Hockey is a speed and power sport but the structure of most dryland sessions may be making athletes slower. Most dryland sessions are set up so that the athletes are exhausted at the end, they are constantly moving for the whole session with very little rest. In many cases the parents are at fault for this because they don’t want to see the kids standing around. Humans have an innate pacing ability, when they know that they have to do something hard for a long period of time they naturally pace themselves. If an athlete knows they have to do 25 sprints they won’t go as fast as if they only have to do five. Developing speed requires maximum speed on each sprint . A couple of years ago an NHL team approached us to analyze their practices. The media had been going on about how the team was slow and needed to develop some speed. We knew from seeing the on ice sprint testing that the strength coach had done in camp that the team actually had some of the faster players in the league and on average was a much faster team than several others that the media said were faster.  We shot video of the practice and analyzed it using biomechanics software to get skating speed during the different drills and then compared the practice speeds to the training camp testing speeds. At no point in the practice did the players skate at more than 80% of the peak speed. They paced themselves through the whole practice because the coach liked to run up tempo practices that tired the guys out. They learned to play slow because this is how they practiced, and they could not improve on ice speed because they never skated fast enough in practice. After adjusting the practices the team went on a winning streak and the media stated commenting on how much faster they were playing. Continuous motion dryland is only going to teach a player to pace themselves not build speed.

Individualization

Elite athletes us individualized programs to address their weakness and build on their strengths to make them complete athletes. All the top NHL players hire strength coaches for personal training over the summer months. Every NHL team has a full time strength coach who is expected to individualize the programs for each player during the season. They make this investment because every athlete responds a little differently to training and has different needs depending on their age, fitness, position and role on the team. It is no different for a developing athlete, in fact it may be even more important for a developing athlete to get the individual attention.

 

Any good program starts with a detailed assessment of all aspects of hockey fitness and then uses that information to build the program that is specific to each athlete. Group fitness, yes dryland is group fitness, treats everyone the same way, they do the same workouts regardless of their fitness or individual needs.

Long Term Development

Development is a favourite word of hockey coaches and parents but few actually pay any attention to the principals of long term athlete development. Several years ago Sport Canada started investing money in the creation of a long term athlete development model. They brought in top experts on sport and child development from around the world. The results of this can be seen at www.ltad.ca. One of the key results of this work is that we now know that as kids grow and develop there are period s of time when different fitness qualities develop most effectively. For instance between the ages of 7-9 is period where kids are most adaptable to speed training, particularly hand and foot speed. Missing this period can affect speed later in life. Just going into the growth spurt is a period where aerobic fitness is most trainable and in the 12-18 months immediately following the growth spurt is a period where strength and muscle mass is most trainable. Dryland training alone does not and cannot address these key developmental points. Group programs don’t account for the individual maturation and development rates of each athlete in the way that an individualized program does. They are also not structured to effective develop strength and size. If an athlete is not in a proper strength program by the time they go through their growth spurt, they will have a much harder time developing the size and strength they need to play at the highest levels of hockey.

Dryland can be a valuable part of an athlete’s development but only if it is combined with an individually designed, testing based program that respect the principals of long term athlete development.

Advertisements

Beta Alanine Supplementation

July 7, 2010

If you pick up any fitness magazine or walk into any nutrition store you will find dozens of products that claim to improve performance, with more showing up on the store shelves every month. In most cases the claims are exaggerated with very few products actually improving performance. Every now and then however a product does come along that lives up to the hype; about twenty years ago that product was creatine, which has gone on to become the most researched performance enhancing supplement with the vast majority of studies supporting it’s use in most athlete groups.  Recently another product has started to show that same type of promise: Beta alanine. Beat alanine supplementation has been reported to decrease fatigue associated with higher intensity exercise.

Fatigue during Exercise

Fatigue, defined as the inability to carry on a given level of work, is a complex phenomenon with many factors contributing simultaneously. While the inability of the nervous system to activate muscle fibres, interference with calcium release or uptake within the muscle, structural damage to muscle fibres, heat, and depletion of energy stores are some of the main culprits, an accumulation of metabolites like ADP, inorganic phosphate,  lactate and hydrogen ions are among the most well known contributors to fatigue.

There has been an ongoing debate about the role of lactate in fatigue. Research conducted in the 1970s suggested that lactate was a major contributor to fatigue. Many of these studies were correlation studies that did not look at cause and effect. While there was a correlation between the amount of lactate that was produced and fatigue more recent research has shown that lactate itself does not contribute to fatigue and may actually work to prevent fatigue. The production of hydrogen ions, from various sources in the series of chemical reactions that take place when the anaerobic energy systems are used, can lead to a decrease in the pH of the cell; interfering with energy production and muscle contraction.

Buffers

Buffers are the body’s chemical agents that keep pH in the cells within normal range. There are a variety of buffers that the body uses. Bicarbonate is the most important extracellular buffer, meaning that it maintains the pH outside of the cells. It has been known for many years that ingesting sodium bicarbonate, baking soda, can increase the effectiveness of the bicarbonate buffering system in the body and delay fatigue in high intensity sports. For many people ingesting baking soda causes stomach problems and can lead to vomiting or diarrhoea, unpleasant side effects at the best of times but particularly problematic during competition.  Carnosine is the primary intramuscular buffer found in humans, it also seems to have positive effects on the nervous system, acts as an antioxidant and may have anti aging effects.  Carnosine does not appear to be increased by exercise  but supplementation with Beta Alanine does increase intramuscular carnosine and improve buffer capacity.

Effects on Performance

The majority of studies suggest that beta alanine can enhance performance in sports where there are maximal or near maximal efforts for 60s to 5 minutes. Shorter duration sprints and strength training do not seem to benefit as much from beta alanine use, although total work volume in strength training sessions can be improved by as much as 20% following beta alanine supplementation. Whether the increase in work volume can translate into better training adaptations and performance improvements is not known. Two studies have shown improvements in power at anaerobic threshold following beta alanine supplementation and slight improvements (2.5%) in time to exhaustion at anaerobic threshold.

Supplementation Protocol

Several studies have been done on to find the optimal protocol for taking beat alanine. It appears that ability of beta alanine to increase carnosine is dose dependant, 6-7 g per day give best results. Beta alanine supplements often cause tingling sensations in various parts of the body, particularly in the head and neck region. This can become quite intense and unpleasant if large doses are taken at one time. The tingling can start within minutes of taking the supplement and last for up to an hour.  Smaller doses spread throughout the day or time release capsules seem to decrease or eliminate the tingling. Beta alanine supplementation is not an acute response supplement it needs to be done over an extended period of time for significant effects to be noticed, usually 28 days or more.

Adverse Effects

Currently the only known adverse effects associated with beta alanine supplementation is the tingling that is noticed shortly after taking the supplement.

References

  1. Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287–332.
  2. ARTIOLI, G. G., B. GUALANO, A. SMITH, J. STOUT, and A. H. LANCHA, JR. Role of A-Alanine Supplementation on Muscle Carnosine and Exercise Performance. Med. Sci. Sports Exerc., Vol. 42, No. 6, pp. 1162–1173, 2010
  3. Boning D, Maassen N. Last word on point:counterpoint: lactic acid is/is not the only physicochemical contributor to the acidosis of exercise. J Appl Physiol. 2008;105(1):368.
  4. Cairns SP. Lactic acid and exercise performance: culprit or friend? Sports Med. 2006;36(4):279–91.

Warm Up

June 22, 2010

Warm up is now considered an essential part of a workout or pre competition routine. While originally thought to be primarily a means of preventing injury, it is now commonly accepted that the main purpose of warm up is to improve performance with injury prevention taking a secondary role. The positive effects of warm up occur because of several mechanisms; increased muscle temperature, cardiac adaptations, injury prevention and mental rehearsal.

Increased Muscle Temperature

An increase in body temperature is one of the main physiological adaptations to warming up.  The increase results from unused energy and dissipated heat produced by friction from sliding muscle filaments during contraction. The elevated temperature results in a more rapid and complete dissociation of oxygen from hemoglobin enhancing oxidative processes in the muscle and increasing VO2 max. Increased body temperature stimulates vasodilation in the working muscle increasing blood flow through the muscle and reduced muscle viscosity increasing mechanical efficiency. Nerve conduction velocity is improved resulting in faster contractions and relaxation of muscles. The heart rate increases and lactic acid production decreases after warming up.  All these changes add up to improved performance following warm up.

Cardiac Adaptations

Heart problems such as myocardial ischemia, arrythmias, and sudden cardiac death can occur during exercise. These problems tend to occur most often in middle-aged and older men. When exercise is combined with other coronary risk factors such as hypertension, cigarette smoking, obesity, and high cholesterol the risk of exercise related cardiac problems increases.

Warming up, however, may help prevent serious damage to the heart. In one study it was reported that 68% of their subjects, men aged 21 to 52, experienced abnormal ECG readings when they exercised without warming up. Jogging easily for two minutes before the training session though eliminated the abnormal ECG readings in most subjects and reduced it in the others. Abnormal readings seen during training without a warm up have been attributed to the inability of coronary blood flow to meet the demands that the exercise session places on the heart muscle.

Injury Prevention

Preventing injuries, such as muscle strains and tears, is often suggested as one of the primary benefits of warm up. Even though most coaches suggest that warming up can help prevent injuries most of the evidence is empirical and that very few, if any, studies can show that warming up decreases the incidence of musculoskeletal injuries. This is in part because during a study a researcher would never set out to injure their subjects intentionally. It is hypothesized that warming up can help prevent injuries because it stretches the muscle tendon unit resulting in a greater length for a given load; this places less tension on the muscle-tendon junction reducing the potential for injury. However, the majority of musculoskeletal injuries occur because of strength or flexibility imbalances and therefore not affected by warm up.

Mental Rehearsal

Warm up provides an athlete the time to mentally review and prepare for the training session of competition that follows. Visualizing the activities to follow increases nervous system arousal, increasing the number of motor units activated, improving strength and power activities and enhancing skill acquisition.

Types of warm ups

There are three types of warm ups: passive, general and specific. Each has its advantages and disadvantages.

Passive warm up

A passive warm up increases temperature through external means. Massage, hot showers, lotions, and heating pads are common forms. Although these methods increase body temperature, they produce little positive effect on performance. Several researchers have compared the effects of active, passive and no warm up on physiological markers of performance. They found that the passive warm up did not increase VO2, or decrease blood lactate levels any more than no warm up. They did find though that the heart rate increased. A passive warm up, because of increased muscle temperature, may be suitable prior to a stretching exercise but should not be recommended as the sole means of warming up for intense physical activity.

General Warm Up

A general warm up increases temperature by using movements for the major muscle groups. Calisthenics and light jogging activities are most common. This type of warm up is meant to increase temperature in a variety of muscles using general movement patterns. This is a good warm up for a fitness class but should not serve as the sole form of warm up for athletic training or events.

Specific Warm Up

The specific warm up is designed to prepare the participant for the specific demands of the upcoming activity. The specific warm up helps psychological readiness, co-ordination of specific movement patterns, and prepares the central nervous system. A specific warm up usually consists of a simulation of some technical component of the activity at work rates that increase progressively. For example, an Olympic weightlifter will perform the snatch with heavier weights progressively until reaching 80-90% of the opening attempt. Because of the rehearsal component of this type of warm, it is the preferred method for sports activities, particularly high speed and power activities.

Designing a warm up

A good warm up has both a general and specific component and may include a passive component if the athlete feels they perform better when they use some sort of a topical analgesic like Tiger Balm.

General Warm Up

Full body Calisthenics

A warm up starts with some full body calisthenics. Exercises like jumping jacks, rope jumping, push ups, sit ups, and lunges are full body exercises that will increase body temperature. These exercises should be done for only 1- 2 minutes at a time as the goal of warm up is to increase temperature not create fatigue.

Stretching

Dynamic stretching is a more effective means of warm up stretching than static stretching, meaning that rather than holding a stretch for a period of time you move through a full range of motion and then back to your starting position immediately without holding the stretch. This is particularly true when you are doing power training. Several studies have shown that a static stretch immediately before power training can significantly decrease subsequent power development. This is because the static stretch decreases the effectiveness of the stretch shortening cycle.

Duration of General Warm Up

The amount of time needed to warm up depends on the type and intensity of the activity as well as environmental conditions. For someone engaged in a light jogging program 10 minutes may be sufficient for a warm up. Elite level athletes may require 30 or 40 minutes to warm up depending on the nature of the event, with higher intensity events requiring longer warm ups. Exercising in a warm environment requires a shorter warm up than exercising in a cold one. In a normal environment the onset of sweating is usually a good indicator that body temperature has increased sufficiently.

Specific Warm Up

The nature of the specific warm up depends on the activity to follow. Keep in mind that warm up is just that warm up not training, fatigue should be kept to a minimum during warm up otherwise the training session will suffer.

Warming Up for Strength Training

When weight training, do at least two sets, one at 50% and one at 75% of the work weight, before using the working weight. Very strong people need to do more sets. Many elite powerlifters and weightlifters use six to eight warm up sets prior to opening attempts in competition. Repetitions in warm up sets are low, 1-4, and done at a controlled speed. Warm up sets are done for every exercise in the program, not just the first exercise.

Warming Up for Speed, Agility and Power Training

As in weight training a warm up for speed, agility and power events or training uses warm up sets. Prior to each drill start with a walk through set that allows you to rehearse the drill in your mind and remind you of the movements and changes of direction that have to be made. Following the walk through perform two progressively faster trials, one at about half speed and one at three quarter speed. Be sure to focus on good technique during each of the warm up sets, the way you perform in warm up will be the way you perform in the training session.

Warming Up for Aerobic Training

Since most of the aerobic training you will be doing is low intensity there isn’t a specific portion to the warm up. If you were to do higher intensity aerobic intervals you would start with 10 –15 minutes of light jogging prior to starting the interval portion on the session.

A good warm up can make the difference between an adequate and a personal best performance. If you are having trouble int eh early parts of an event or seem to get a second wind take a look at your warm up it may need some fine tuning.


The Power Clean

June 14, 2010

The Olympic style lifts, the snatch, clean and jerk and their variations have become the basis of the strength and power programs for many sports. The primary reason for including these exercises in a program is to train the nervous system to maximally activate the muscles, resulting in greater speed and power while under load. Additionally some coaches feel that the movements used in the clean are similar to those used when the body starts to open during jumps and accelerating out of the athletic ready position. Athletes throughout the world use the Olympic style lifts yet there are many misconceptions and concerns about including them in a training program.

Safety

Many athletes and coaches worry about being injured while doing a clean or snatch. When done properly the Olympic style lifts are among the safest lifts. Back injuries in sports like golf, baseball, and football occur about twice as frequently as they do in Olympic lifting. The odds of developing a shoulder injury during the bench press are much greater than injuring your back during a clean, provided they are done properly.

Sets and Reps

The Olympic style lifts need to be explosive; power is the key to successfully using these exercises in your program. It is possible to muscle the weight up but it defeats the purpose of the exercise and increases the chance of injury. In order to keep these movements explosive and powerful sets need to be short. The anaerobic alactic energy system, which uses the ATP-CP stored in the muscles, is the only energy system that provides energy quickly enough to maintain the power output needed to make the Olympic style lifts effective. The anaerobic alactic system can provide energy for 10-12s of all out work, which is about four reps for a power clean or power snatch. There is no need to take these exercises to a failure point, so you should have a little left at the end of a set.

Choosing the Right Lifts

Table 1 shows a list of the Olympic style lifts and some of their variations. There are plenty to choose from, providing the opportunity for lots of variation in your program. The exercises that are chosen will be dependant on equipment and space available and the body structure of the athlete.

Clean Snatch Jerk
Power clean Power snatch Push Press
Hang clean Hang snatch Push Jerk
Clean pull from the floor Snatch pull form the floor Power Jerk
Clean pull from blocks Snatch pull from blocks

During the explosive second pull of the clean or snatch the weight is brought in against the legs high on the thighs, near the hips. This brings the bar close to the athlete’s center of gravity and allows the greatest power production. It also keep the bar moving close to the body, eliminating a swinging action away from the body that could potentially cause injury when the athlete tries to dip under the bar. To effectively perform the technique of either the snatch or clean the athlete must be able to get the bar into the right position. While this will not be a problem for the majority of athletes those with very long arms and short torsos may have difficulty performing the exercise properly. To test whether an athletes should be performing clean movements or snatch movements have the athlete assume the hang clean starting position demonstrated on the video, holding a broom stick in front of their body with an overhand grip. If the broom stick is sitting above the middle of their thigh they can safely perform clean and snatch exercises. If the broom stick is sitting below mid thigh ask the student to move their hands out to a snatch width grip and reexamine the bar placement. If sliding the hands out has moved the bar above mid thigh the student can perform snatch movements but not clean movements. If the bar is still not above mid thigh and the body position is correct the athlete should not be doing either clean movements or snatch movements.

The Jerk and variations can be safely performed by almost all athletes provided they have adequate flexibility through the wrists, shoulders and elbows to get into the correct body positions. Very tall athletes with long limbs may feel unstable during Jerk variations because the bar is so far above their center of gravity. These athletes should spend some time focusing on developing rotator cuff and shoulder strength before attempting these exercises.

If an athlete has physical limitations that prevent them from using the Olympic style lifts in their training this does not mean they cannot train for power development. Various plyometric jumps and jump throw combinations with medicine balls can be used instead.


Squatting Improves Speed

June 10, 2010

Modern strength training programs for athletes spend an inordinate amount of time focusing on using unstable surfaces, single leg exercises and balance training to improve speed, strength and power.  There is currently no research that shows that these types of training improves athletic performance (1) but it has been well established that training on unstable training results in significantly less force development and loads that will limit strength gains (2). All this balance and stability training has come at the cost of building strength in traditional exercises like the squat, bench press, deadlift, and power clean yet these exercise have time and again been shown to be key to athletic performance. A recent study at Applalachian State University examined the relationship between squat strength and sprint speed(3).  The subjects were a group of 17 football players with an average height of 1.78m and an average weight of 85.9 kg.  1RM squat was assessed on the first day of the study. All subjects were required to squat to a 70o knee angle, making it a deeper squat than the 90o knee angle that many people use in training. A deeper squat will normally decrease the amount of weight lifted. The average 1RM squat was 166.5 kg. Later in the week the subjects performed electronically timed 5, 10, and 40m sprints on a standard outdoor track surface. When they analyzed the data they found significant correlations between squat strength to body weight ratio and the 10m and 40m sprints.  When the group was divided into those with a squat to bodyweight ratio of greater than 2.1 and those with a ratio of less than 1.9 those with the higher strength to weight ratio were significantly faster than those with a squat to bodyweight ratio less than 1.9. This study adds to the growing body of evidence that shows the importance of traditional strength training exercises for improving athletic performance.

So why does improved strength improve speed and acceleration? Think back to your high school physics class and you might remember the formula F=ma; force is equal to mass times acceleration.  Transforming the formula to solve for acceleration we get a=F/m; acceleration is equal to force divided by mass. When we are speaking of running or jumping activities the mass is your body weight. If you increase your strength to body weight ratio you will increase your speed and acceleration; it is simple physics.

Unstable surface, single leg and balance training may be fine during a warm up but they are no replacement for good old fashioned deep squats when it comes to increasing strength and improving speed and power that translates to athletic ability. So if you want to get faster stop using circus tricks and lift some real weights.

  1. Wilardson, J. (2004). The effectiveness of resistance exercise performed on unstable equipment. JSCR. 26(5) 70-74.
  2. Behm et al (2002). Muscle force and activation under stable and unstable conditions. JSCR 16(3) 416-422
  3. McBride et al (2009). Relationship between maximal squat strength and five, ten, and forty yard sprint times. JSCR. 23(6) 1633-1636.

Skilled Agility

February 3, 2009

Ed McNeely

The term agility is often used synonymously with change of direction speed, athleticism, and sport speed.  While the ability to change direction is definitely part of the equation agility is much more; encompassing perceptual factors such as the ability to anticipate and react to a stimulus, select the appropriate movement and direction, and make necessary body adjustments to optimize stride rate and frequency for the movement (Young et al. 2002).

 Over the past few years agility training has become an important part of athletic conditioning programs. Many strength coaches now specialize in teaching body mechanics and movements associated with agility training. Virtually every strength and conditioning conference includes at least one lecture on some aspect of developing agility and yet there is little evidence that agility training as it is typically practiced is important to sport performance or enhances sport performance. In fact there have been a few studies that suggest that agility may not be related to performance.

Hoffman et al. (1996) examined the relationship between basketball playing time over a four year period and athletic performance tests. Testing vertical jump, 1RM squat, 1RM bench press, 27m sprint, Agility T-test, and 2414m run they found the 1RM squat to be most consistently correlated to playing time. Agility was not significantly correlated to playing time (r= -0.26 year 1; r=-0.30 year 2; r=-0.33 year 3 and r=-0.30 year 4). This suggests that either a players athleticism is not accurately measured through traditional agility testing or that it plays very little role in a coaches impression of the players ability.

In a recent examination of skating ability in hockey players Farlinger et al (2007) found very low correlations between on ice cornering ability and performance on a hexagon agility test (r= 0.19).  Lateral shuffle was correlated to skating cornering ability (r=0.53). These results are similar to what we have seen in our work with NCAA, Professional, and Youth hockey players. It has been our experience that changes in off ice agility test and drill performance does not translate to performances in on ice agility and change of direction ability.

Roetert et al. (1996) examined the relationship between tennis performance level and selected performance tests. They found a significant contribution by side shuffle, vertical jump, push ups and sit and reach to their prediction equation. The hexagon agility test did not contribute to the accuracy of their prediction. 

Empirical evidence suggests that higher level athletes who are typically getting more playing time are more agile than lower level athletes. So, one has to wonder why there is no research showing the relationship between agility and sport specific performances. The answer to that may lie in the way that agility is measured. Performance tests like the hexagon test, T-test and Pro -Agility test are among the most commonly used agility measures in both practice and research.  All of these tests measure only the change of direction aspect of agility and they do so using a predictable predetermined pattern. There is considerable research suggesting that better athletes produce faster, more accurate responses because of their ability to anticipate what their opponent is about to do based on body angles and other behavioral and visual cues (Young and Farrow, 2007).

In a novel approach to agility testing in netball Farrow, Young, and Bruce (2005) used a life sized video image of an attacking player about to pass a ball. The subjects were required to side shuffle, move forward and then break left or right depending on the direction the ball was passed in the video. They found that more highly skilled players had faster overall test times than lower skilled players due in large part to faster decision times in assessing the direction of the pass.

If we accept that agility, as it is performed in a game situation, is more than just the ability to change direction we need to reexamine the way we do agility training.

Skilled Agility Training

Sport specific skills are the most important factor in sporting success. There are plenty of examples from all professional sport leagues of athletes who did very little conditioning yet excelled because of their superior skills. There are far fewer stories of athletes who had long successful careers based solely on physical conditioning. Skilled agility training links sport specific skills to physical conditioning, creating a better transfer of physical conditioning to game situations.

Gabbett (2006) compared traditional a conditioning program that consisted of vary duration sprints of 10-40m with skill based conditioning games that were designed to develop passing, catching tackling and other skills needed for Rugby. Overall training time was similar between the two groups and both groups participated in team skill sessions. At the end of the 9 week program the traditional conditioning group had improved both their 10m sprint time and their aerobic fitness scores. The skill based conditioning group improved their 10m, 20m, and 40m time and aerobic fitness and vertical jump scores. The 20m, 40m and vertical jump scores were significantly different between the groups after training with the skilled conditioning group outperforming the traditional group. Of greater significance was the performance in actual game play. Both teams played eight league games during the study with each team compiling a 6 win 2 loss record. The traditional conditioning team had an average score of 28-18 while the skill based training team had an average score of 45-12. While there are a variety of factors that can effect the final score of a game this study clearly shows that skill based conditioning is at least if not more effective than traditional conditioning programs at producing not only fitness improvements but on game performance improvements.

It has been our experience that skill based agility training has several advantages over traditional training.

  • Skilled agility training is time efficient allowing both skill and fitness to be trained simultaneously. This can be a big advantage in sport programs that only have limited gym, field or ice time. Coaches do not feel like they have to choose one over the other.
  • Skills can be practiced under fatigued conditions similar to those experienced late in games.
  • The conditioning coach has more control over the athlete’s total training volume. Very often the work done in practice is not counted in the overall training volume when conditioning programs are designed. Traditionally the conditioning coach has no control over the type and intensity of work done in practice so in many instances athletes show up for speed and power sessions already fatigued from a practice, making the conditioning session less effective
  • Intensity is higher. Skilled agility training makes use of games and game like situations to create a competitive environment that forces the athletes to train at a higher level of intensity than normal. We saw this quite clearly when we conducted a practice evaluation and analysis of a Professional hockey team. Using video analysis of the practice we found that on average during drill players were skating at about 75% of the peak velocity that was found during testing in training camp. At the end of practice when a competitive drill was introduced average velocities increased to 83% of peak velocity even though it was the last drill of the practice and the players were fatigued.
  • Athletes learn to use perceptual cues to make their reactions and agility performances better.