Warm Up

June 22, 2010

Warm up is now considered an essential part of a workout or pre competition routine. While originally thought to be primarily a means of preventing injury, it is now commonly accepted that the main purpose of warm up is to improve performance with injury prevention taking a secondary role. The positive effects of warm up occur because of several mechanisms; increased muscle temperature, cardiac adaptations, injury prevention and mental rehearsal.

Increased Muscle Temperature

An increase in body temperature is one of the main physiological adaptations to warming up.  The increase results from unused energy and dissipated heat produced by friction from sliding muscle filaments during contraction. The elevated temperature results in a more rapid and complete dissociation of oxygen from hemoglobin enhancing oxidative processes in the muscle and increasing VO2 max. Increased body temperature stimulates vasodilation in the working muscle increasing blood flow through the muscle and reduced muscle viscosity increasing mechanical efficiency. Nerve conduction velocity is improved resulting in faster contractions and relaxation of muscles. The heart rate increases and lactic acid production decreases after warming up.  All these changes add up to improved performance following warm up.

Cardiac Adaptations

Heart problems such as myocardial ischemia, arrythmias, and sudden cardiac death can occur during exercise. These problems tend to occur most often in middle-aged and older men. When exercise is combined with other coronary risk factors such as hypertension, cigarette smoking, obesity, and high cholesterol the risk of exercise related cardiac problems increases.

Warming up, however, may help prevent serious damage to the heart. In one study it was reported that 68% of their subjects, men aged 21 to 52, experienced abnormal ECG readings when they exercised without warming up. Jogging easily for two minutes before the training session though eliminated the abnormal ECG readings in most subjects and reduced it in the others. Abnormal readings seen during training without a warm up have been attributed to the inability of coronary blood flow to meet the demands that the exercise session places on the heart muscle.

Injury Prevention

Preventing injuries, such as muscle strains and tears, is often suggested as one of the primary benefits of warm up. Even though most coaches suggest that warming up can help prevent injuries most of the evidence is empirical and that very few, if any, studies can show that warming up decreases the incidence of musculoskeletal injuries. This is in part because during a study a researcher would never set out to injure their subjects intentionally. It is hypothesized that warming up can help prevent injuries because it stretches the muscle tendon unit resulting in a greater length for a given load; this places less tension on the muscle-tendon junction reducing the potential for injury. However, the majority of musculoskeletal injuries occur because of strength or flexibility imbalances and therefore not affected by warm up.

Mental Rehearsal

Warm up provides an athlete the time to mentally review and prepare for the training session of competition that follows. Visualizing the activities to follow increases nervous system arousal, increasing the number of motor units activated, improving strength and power activities and enhancing skill acquisition.

Types of warm ups

There are three types of warm ups: passive, general and specific. Each has its advantages and disadvantages.

Passive warm up

A passive warm up increases temperature through external means. Massage, hot showers, lotions, and heating pads are common forms. Although these methods increase body temperature, they produce little positive effect on performance. Several researchers have compared the effects of active, passive and no warm up on physiological markers of performance. They found that the passive warm up did not increase VO2, or decrease blood lactate levels any more than no warm up. They did find though that the heart rate increased. A passive warm up, because of increased muscle temperature, may be suitable prior to a stretching exercise but should not be recommended as the sole means of warming up for intense physical activity.

General Warm Up

A general warm up increases temperature by using movements for the major muscle groups. Calisthenics and light jogging activities are most common. This type of warm up is meant to increase temperature in a variety of muscles using general movement patterns. This is a good warm up for a fitness class but should not serve as the sole form of warm up for athletic training or events.

Specific Warm Up

The specific warm up is designed to prepare the participant for the specific demands of the upcoming activity. The specific warm up helps psychological readiness, co-ordination of specific movement patterns, and prepares the central nervous system. A specific warm up usually consists of a simulation of some technical component of the activity at work rates that increase progressively. For example, an Olympic weightlifter will perform the snatch with heavier weights progressively until reaching 80-90% of the opening attempt. Because of the rehearsal component of this type of warm, it is the preferred method for sports activities, particularly high speed and power activities.

Designing a warm up

A good warm up has both a general and specific component and may include a passive component if the athlete feels they perform better when they use some sort of a topical analgesic like Tiger Balm.

General Warm Up

Full body Calisthenics

A warm up starts with some full body calisthenics. Exercises like jumping jacks, rope jumping, push ups, sit ups, and lunges are full body exercises that will increase body temperature. These exercises should be done for only 1- 2 minutes at a time as the goal of warm up is to increase temperature not create fatigue.

Stretching

Dynamic stretching is a more effective means of warm up stretching than static stretching, meaning that rather than holding a stretch for a period of time you move through a full range of motion and then back to your starting position immediately without holding the stretch. This is particularly true when you are doing power training. Several studies have shown that a static stretch immediately before power training can significantly decrease subsequent power development. This is because the static stretch decreases the effectiveness of the stretch shortening cycle.

Duration of General Warm Up

The amount of time needed to warm up depends on the type and intensity of the activity as well as environmental conditions. For someone engaged in a light jogging program 10 minutes may be sufficient for a warm up. Elite level athletes may require 30 or 40 minutes to warm up depending on the nature of the event, with higher intensity events requiring longer warm ups. Exercising in a warm environment requires a shorter warm up than exercising in a cold one. In a normal environment the onset of sweating is usually a good indicator that body temperature has increased sufficiently.

Specific Warm Up

The nature of the specific warm up depends on the activity to follow. Keep in mind that warm up is just that warm up not training, fatigue should be kept to a minimum during warm up otherwise the training session will suffer.

Warming Up for Strength Training

When weight training, do at least two sets, one at 50% and one at 75% of the work weight, before using the working weight. Very strong people need to do more sets. Many elite powerlifters and weightlifters use six to eight warm up sets prior to opening attempts in competition. Repetitions in warm up sets are low, 1-4, and done at a controlled speed. Warm up sets are done for every exercise in the program, not just the first exercise.

Warming Up for Speed, Agility and Power Training

As in weight training a warm up for speed, agility and power events or training uses warm up sets. Prior to each drill start with a walk through set that allows you to rehearse the drill in your mind and remind you of the movements and changes of direction that have to be made. Following the walk through perform two progressively faster trials, one at about half speed and one at three quarter speed. Be sure to focus on good technique during each of the warm up sets, the way you perform in warm up will be the way you perform in the training session.

Warming Up for Aerobic Training

Since most of the aerobic training you will be doing is low intensity there isn’t a specific portion to the warm up. If you were to do higher intensity aerobic intervals you would start with 10 –15 minutes of light jogging prior to starting the interval portion on the session.

A good warm up can make the difference between an adequate and a personal best performance. If you are having trouble int eh early parts of an event or seem to get a second wind take a look at your warm up it may need some fine tuning.

Advertisements

The Power Clean

June 14, 2010

The Olympic style lifts, the snatch, clean and jerk and their variations have become the basis of the strength and power programs for many sports. The primary reason for including these exercises in a program is to train the nervous system to maximally activate the muscles, resulting in greater speed and power while under load. Additionally some coaches feel that the movements used in the clean are similar to those used when the body starts to open during jumps and accelerating out of the athletic ready position. Athletes throughout the world use the Olympic style lifts yet there are many misconceptions and concerns about including them in a training program.

Safety

Many athletes and coaches worry about being injured while doing a clean or snatch. When done properly the Olympic style lifts are among the safest lifts. Back injuries in sports like golf, baseball, and football occur about twice as frequently as they do in Olympic lifting. The odds of developing a shoulder injury during the bench press are much greater than injuring your back during a clean, provided they are done properly.

Sets and Reps

The Olympic style lifts need to be explosive; power is the key to successfully using these exercises in your program. It is possible to muscle the weight up but it defeats the purpose of the exercise and increases the chance of injury. In order to keep these movements explosive and powerful sets need to be short. The anaerobic alactic energy system, which uses the ATP-CP stored in the muscles, is the only energy system that provides energy quickly enough to maintain the power output needed to make the Olympic style lifts effective. The anaerobic alactic system can provide energy for 10-12s of all out work, which is about four reps for a power clean or power snatch. There is no need to take these exercises to a failure point, so you should have a little left at the end of a set.

Choosing the Right Lifts

Table 1 shows a list of the Olympic style lifts and some of their variations. There are plenty to choose from, providing the opportunity for lots of variation in your program. The exercises that are chosen will be dependant on equipment and space available and the body structure of the athlete.

Clean Snatch Jerk
Power clean Power snatch Push Press
Hang clean Hang snatch Push Jerk
Clean pull from the floor Snatch pull form the floor Power Jerk
Clean pull from blocks Snatch pull from blocks

During the explosive second pull of the clean or snatch the weight is brought in against the legs high on the thighs, near the hips. This brings the bar close to the athlete’s center of gravity and allows the greatest power production. It also keep the bar moving close to the body, eliminating a swinging action away from the body that could potentially cause injury when the athlete tries to dip under the bar. To effectively perform the technique of either the snatch or clean the athlete must be able to get the bar into the right position. While this will not be a problem for the majority of athletes those with very long arms and short torsos may have difficulty performing the exercise properly. To test whether an athletes should be performing clean movements or snatch movements have the athlete assume the hang clean starting position demonstrated on the video, holding a broom stick in front of their body with an overhand grip. If the broom stick is sitting above the middle of their thigh they can safely perform clean and snatch exercises. If the broom stick is sitting below mid thigh ask the student to move their hands out to a snatch width grip and reexamine the bar placement. If sliding the hands out has moved the bar above mid thigh the student can perform snatch movements but not clean movements. If the bar is still not above mid thigh and the body position is correct the athlete should not be doing either clean movements or snatch movements.

The Jerk and variations can be safely performed by almost all athletes provided they have adequate flexibility through the wrists, shoulders and elbows to get into the correct body positions. Very tall athletes with long limbs may feel unstable during Jerk variations because the bar is so far above their center of gravity. These athletes should spend some time focusing on developing rotator cuff and shoulder strength before attempting these exercises.

If an athlete has physical limitations that prevent them from using the Olympic style lifts in their training this does not mean they cannot train for power development. Various plyometric jumps and jump throw combinations with medicine balls can be used instead.


Squatting Improves Speed

June 10, 2010

Modern strength training programs for athletes spend an inordinate amount of time focusing on using unstable surfaces, single leg exercises and balance training to improve speed, strength and power.  There is currently no research that shows that these types of training improves athletic performance (1) but it has been well established that training on unstable training results in significantly less force development and loads that will limit strength gains (2). All this balance and stability training has come at the cost of building strength in traditional exercises like the squat, bench press, deadlift, and power clean yet these exercise have time and again been shown to be key to athletic performance. A recent study at Applalachian State University examined the relationship between squat strength and sprint speed(3).  The subjects were a group of 17 football players with an average height of 1.78m and an average weight of 85.9 kg.  1RM squat was assessed on the first day of the study. All subjects were required to squat to a 70o knee angle, making it a deeper squat than the 90o knee angle that many people use in training. A deeper squat will normally decrease the amount of weight lifted. The average 1RM squat was 166.5 kg. Later in the week the subjects performed electronically timed 5, 10, and 40m sprints on a standard outdoor track surface. When they analyzed the data they found significant correlations between squat strength to body weight ratio and the 10m and 40m sprints.  When the group was divided into those with a squat to bodyweight ratio of greater than 2.1 and those with a ratio of less than 1.9 those with the higher strength to weight ratio were significantly faster than those with a squat to bodyweight ratio less than 1.9. This study adds to the growing body of evidence that shows the importance of traditional strength training exercises for improving athletic performance.

So why does improved strength improve speed and acceleration? Think back to your high school physics class and you might remember the formula F=ma; force is equal to mass times acceleration.  Transforming the formula to solve for acceleration we get a=F/m; acceleration is equal to force divided by mass. When we are speaking of running or jumping activities the mass is your body weight. If you increase your strength to body weight ratio you will increase your speed and acceleration; it is simple physics.

Unstable surface, single leg and balance training may be fine during a warm up but they are no replacement for good old fashioned deep squats when it comes to increasing strength and improving speed and power that translates to athletic ability. So if you want to get faster stop using circus tricks and lift some real weights.

  1. Wilardson, J. (2004). The effectiveness of resistance exercise performed on unstable equipment. JSCR. 26(5) 70-74.
  2. Behm et al (2002). Muscle force and activation under stable and unstable conditions. JSCR 16(3) 416-422
  3. McBride et al (2009). Relationship between maximal squat strength and five, ten, and forty yard sprint times. JSCR. 23(6) 1633-1636.

Monitoring Your Recovery

January 17, 2009

Ed McNeely

Training without monitoring your progress is like driving with your eyes closed, you will get somewhere but you can’t be sure where or what shape you’ll be in when you arrive. Through daily monitoring you will be able to make the fine adjustments to your program that allow you to continue to progress and recover at the fastest rate possible.

 The Recovery Questionnaire

 The recovery questionnaire is filled out every day of the week whether there is a workout scheduled or not, you want to be able to measure the effect of a day off as well as a training day. A 2-3 week baseline should be established in the off-season when you are doing little or no training. The baseline is used to measure how far from a fully recovered state you are moving as a result of training and will be referred back to every week so keep the baseline numbers handy.

 Each of the items in table 1 are rated on a scale of 1-10, using half points as well as whole numbers. high numbers are better ratings for example a rating of 10 on quality of sleep means you had a great nights sleep, a 1 might mean you were up most of the night. The ratings are based on how you fell when you first wake up and get out of bed in the morning. Be honest with yourself, as you will use this information to adjust your program. Body weight should be measured after voiding and before breakfast so that conditions for the weigh in are standardized. Morning heart rate is measured as soon as you wake up. Keep a watch by your bedside and take a 30 second heart rate count and multiply it by two to get the number of beats per minute.

Table 1. The Recovery Questionnaire

Item Mon Tues Wed Thurs Fri Sat Sun Average Baseline
Hours of Sleep                  
Sleep Quality                  
Muscle Soreness                  
Joint Soreness                  
General Fatigue                  
Desire to Train                  
Motivation                  
Morning HR                  
Bodyweight                  

 Using the Data to Adjust The Program

 All data is compared back to the baseline established in the off-season. No single variable can assess recovery; the power of the questionnaire comes from the use of multiple variables simultaneously. If you see an increase of two points on the unshaded variables, compared to the baseline, on three or more variables two days in a row you need to take a day off or cut both the volume and intensity of the day’s training in half. If the week average of three of the unshaded items increases by three or more points you need to schedule a recovery week, even if one is not planned in the program.

 Morning heart rate and body weight are not included in the daily and weekly analysis because changes in these items are much more gradual than the other factors that are being monitored. Increases in morning heart rate of more than 10 beats per minute for a week or more should be looked at closely, if it is occurring without changes in any of the other variables it may signal a loss of aerobic fitness which may or may not affect your performance depending on the endurance demands of your sport. If the weekly average is increasing and morning heart rate is high you need to consider planning a recovery week.

 Unintentional decreases in bodyweight are one of the early signs of overtraining. Body weight can fluctuate daily because of hydration levels and what you ate and drank the previous day. Very large athletes can see their weight change by several pounds from day to day; because of this it is better to use weekly percent changes in body weight to assess your long-term weight profile. If you see a weekly-unintended weight loss of more than two percent something needs to be adjusted in training or diet. First increase fluid intake to see if you are dehydrated because of the week’s training schedule and insufficient fluid intake. If the weekly average of other variables is increasing and bodyweight is decreasing there is a good chance that you are beginning to overtrain and need to schedule a recovery week.